Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
Front Public Health ; 9: 744535, 2021.
Article in English | MEDLINE | ID: covidwho-1566663

ABSTRACT

Background: Antibodies against SARS-CoV-2 can be detected by various testing platforms, but a detailed understanding of assay performance is critical. Methods: We developed and validated a simple enzyme-linked immunosorbent assay (ELISA) to detect IgG binding to the receptor-binding domain (RBD) of SARS-CoV-2, which was then applied for surveillance. ELISA results were compared to a set of complimentary serologic assays using a large panel of clinical research samples. Results: The RBD ELISA exhibited robust performance in ROC curve analysis (AUC> 0.99; Se = 89%, Sp = 99.3%). Antibodies were detected in 23/353 (6.5%) healthcare workers, 6/9 RT-PCR-confirmed mild COVID-19 cases, and 0/30 non-COVID-19 cases from an ambulatory site. RBD ELISA showed a positive correlation with neutralizing activity (p = <0.0001, R2 = 0.26). Conclusions: We applied a validated SARS-CoV-2-specific IgG ELISA in multiple contexts and performed orthogonal testing on samples. This study demonstrates the utility of a simple serologic assay for detecting prior SARS-CoV-2 infection, particularly as a tool for efficiently testing large numbers of samples as in population surveillance. Our work also highlights that precise understanding of SARS-CoV-2 infection and immunity at the individual level, particularly with wide availability of vaccination, may be improved by orthogonal testing and/or more complex assays such as multiplex bead assays.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Health Priorities , Humans , Sensitivity and Specificity
3.
Cell Host Microbe ; 29(4): 516-521.e3, 2021 04 14.
Article in English | MEDLINE | ID: covidwho-1141671

ABSTRACT

The emergence of SARS-CoV-2 variants with mutations in the spike protein is raising concerns about the efficacy of infection- or vaccine-induced antibodies. We compared antibody binding and live virus neutralization of sera from naturally infected and Moderna-vaccinated individuals against two SARS-CoV-2 variants: B.1 containing the spike mutation D614G and the emerging B.1.351 variant containing additional spike mutations and deletions. Sera from acutely infected and convalescent COVID-19 patients exhibited a 3-fold reduction in binding antibody titers to the B.1.351 variant receptor-binding domain of the spike protein and a 3.5-fold reduction in neutralizing antibody titers against SARS-CoV-2 B.1.351 variant compared to the B.1 variant. Similar results were seen with sera from Moderna-vaccinated individuals. Despite reduced antibody titers against the B.1.351 variant, sera from infected and vaccinated individuals containing polyclonal antibodies to the spike protein could still neutralize SARS-CoV-2 B.1.351, suggesting that protective humoral immunity may be retained against this variant.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Binding Sites , COVID-19/prevention & control , Humans , Neutralization Tests , Receptors, Virus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL